Search results

Search for "band gap" in Full Text gives 271 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • -transporting layers [24], active absorbing layers, and other components [25][26]. Inorganic quantum dots are considered substitutes for fullerene acceptors. Their biggest advantages are a tunable band gap, various absorption spectra, and comparatively high mobility of carriers [27][28]. The application of
  • : The imaginary part function is described by: where Eg is the band gap of the material, E0 is the peak in the joint density of states, Θ is the Heaviside theta function, Γ is the broadening parameter, and A is a prefactor. The refractive indices and extinction coefficients as functions of the
  • , QD520, QD580, QD600, and QD640, respectively. According to Hummon et al. [52] the CdSe valence-band edge was determined to be −6.8 eV, from thin-film UPS and photoluminescence measurements. The CdSe conduction-band edge was determined by the photonic band gap (2.0–4.8 eV). The valence- and conduction
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • in the main band gap of ZnO, Zn 3d→O 2p [20]. The larger average diameter (122.4 nm) than that of the SEM images (70 nm) is due to the fact that particles in solutions are generally larger than those directly seen via microscopy techniques [33]. The increased average diameter and polydispersity index
PDF
Album
Full Research Paper
Published 23 Jan 2024

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • conditions, PDP is a wide-gap dielectric material and is characterized by the following parameters: band gap ≈4.3 eV, electronic work function ≈4.2 eV, electron affinity ≈2 eV, first ionization potential ≈6.2 eV. Experimental evaluations of the electronic parameters of PDP have been made earlier by various
PDF
Album
Full Research Paper
Published 19 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • spectra of the prepared catalysts are shown in Figure 6b. The optical absorption of TiO2 is in the UV region, while the light absorption edge of TiO2@MWCNTs redshifts to the visible-light region. As seen from the Tauc plots (inset of Figure 6b), the optical band gap of TiO2 and TiO2@MWCNTs catalysts are
  • exhibits poor hydrogen production under sunlight irradiation. It could be explained by the 3.14 eV optical band gap of TiO2, which absorbs only UV light. In addition, the fast recombination of the photogenerated (h+/e−) pairs contributes to the poor photochemical catalysis activity of the TiO2 electrode
PDF
Album
Full Research Paper
Published 14 Dec 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • though they have the same chemical surface groups and particle size distribution, they both have varying levels of surface oxidation. The emission wavelength moved from 518 to 543 nm as the degree of surface oxidation increased, which gives an indication about the reduction of band gap between LUMO and
PDF
Album
Review
Published 05 Oct 2022

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • noting that, when the wavelength of the modulating light is close to the band gap of the active region of the QCL, most of the injected light energy excites the electrons in the valence band to transition to the conduction band and then to the upper laser subband, thereby increasing the power of the
  • modulating light. However, with a decrease in the modulated laser wavelength, its energy becomes greater than the band gap between the valence band and the lower laser subband of the conduction band of the QCL active region, with the excess energy exciting the electrons to a higher energy level or high
PDF
Album
Full Research Paper
Published 23 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • metallic substrates. Here, the hybridization between the molecular orbitals and the electronic states of the substrate generally modifies the intrinsic properties of the molecules, inducing the broadening of the molecular resonances, the narrowing of the band gap, and the development of interface states
PDF
Album
Full Research Paper
Published 30 Aug 2022

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • reaction allowed tuning of the optical band gap of the amorphous nanoparticles in the range of 2.2–2.0 eV. On the contrary, the optical band gap of the crystalline particles decreased to a value of 1.7 eV and remained constant when the reaction progressed. Based on the proposed formation mechanism, future
  • syntheses for Sb2S3 particles can be developed, allowing tuning of the particle properties in a broad range. In this way, the selective use of this material in a wide range of applications will become possible. Keywords: band gap; kinetics; nanoparticles; Sb2S3; solar cells; Introduction The search for
  • are several requirements for materials to be eligible for application in the field of photovoltaics, such as high absorption performance, nontoxicity, abundance, efficiency, and low cost. As a semiconductor with a low band gap and a high absorption coefficient, antimony(III) sulfide (Sb2S3) has become
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • theoretical approaches [6]. Possible applications of STO/organic interfaces include FETs [7][8], photodiodes [9], and organic spin valves[10]. Strontium titanate is a semiconductor with an indirect band gap of 3.25 eV [11] crystallizing in a perovskite structure with cubic unit cell. The conductivity can be
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • atoms per each WVI center. As a result, tungsten ions are in tetrahedral coordination environments. W3O9 shows a large energy gap of 3.4 eV which nearly reaches the value of bulk WO3 exhibiting a direct band gap of 3.5 eV [12]. Overall, W3O9 can be seen as the smallest molecular model for bulk WO3
PDF
Album
Full Research Paper
Published 16 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • band gap in semiconductors. However, this approach has major problems. It is semi-empiric and indirect via the Tauc formula [12]. Therefore, it contains highly erroneous data. Here, the approach is to measure the reflectance data and accordingly plot the Tauc formula as a function of the energy
PDF
Album
Review
Published 13 Jan 2021

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • with CTAB due to quantum size effects [31]. The absorption of the Ag2S NPs decreased sharply above λ = 302 nm for Ag2S prepared in pure Tu solution, while it decreased slowly for Ag2S prepared in Tu with CTAB, indicating different absorption edges. The optical band gap of the Ag2S NPs prepared in pure
PDF
Album
Full Research Paper
Published 21 Oct 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • ], NaCl [40], CuN [41] and oxides [32][42] have been used. Typically, the ultrathin films of these wide band gap materials act as insulating layers while still allowing electron tunneling through them. Chemisorbed iodine layers have been used as passivating layers on metals such as Au for achieving
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • result is radically different from the data obtained for graphene/SiO2 [33]. In addition, hBN monolayers exhibit a high temperature stability, a low dielectric constant (ε = 3–4), and a high thermal conductivity [34]. The band gap of hBN is about 5.9 eV [35]. Furthermore, which is also important, hBN is
PDF
Album
Full Research Paper
Published 07 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • through different ways such as the usage of wide-band-gap insulator thin films (e.g., oxides, alkali halides) [3][4], a molecular spacer layer [5][6], or sp2-hybridized two-dimensional interlayers (e.g., graphene and hexagonal boron nitride (h-BN)) [7][8]. The advantageous properties of an h-BN monolayer
  • on metal single crystals are the high crystal quality, chemical inertness and the wide band gap of approx. 6 eV, which apparently renders h-BN a promising candidate for the decoupling of highly ordered molecular films [9][10]. However, indications for a significant hybridization of organic molecules
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • spin coating. RRS from solids can be observed if the energy of the incoming or scattered photons matches real electronic states in the material. One refers to incoming and outgoing resonance, respectively [38][45][46][47]. Taking into account the band gap value and the width of band tails in ZnMgO thin
PDF
Album
Full Research Paper
Published 12 Jun 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • bulk WSe2 nanomembranes, where the excitonic A-peak represents direct-gap optical transitions, while the I-peak is characteristic of indirect band gap optical transitions. The corresponding error bars for the PL A- and I-peak shifts are shown in Figure S1b. Raman and PL analysis as a function of laser
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • solar energy harvesting in photovoltaic and photocatalytic applications owing to their extremely high visible-light absorption and tuned effective band gap. In this work, Ag-loaded TiO2 nanocolumn (Ag-TNC) arrays were fabricated based on anodic aluminum oxide (AAO) template by combining atomic layer
  • conventional method (3.20 eV). This is attributed to the quantum size effect, according to which the Eg value of a semiconductor depends on physicochemical properties such as size, surface area, and crystalline phase [35]. When Ag particles are combined with TiO2, the band gap of the resulting Ag-TNC film is
PDF
Album
Full Research Paper
Published 05 May 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • the treatment of organic contaminants in wastewater is in urgent need owing to the deterioration of the ecological environment [1]. Metal oxides, such as ZnO [2], TiO2 [3], Fe2O3 [4], and CuO [5], have been demonstrated to be promising photocatalysts. In particular, the band gap energy (Eg) of the p
  • spectra were collected to study the optical properties of the samples. As shown in Figure 5a, the CuO/tourmaline composite exhibited higher optical adsorption than that of pure CuO, due to the plasmon resonance of the tourmaline units [24]. The band gap of CuO and CuO/tourmaline composite was calculated
  • to be Eg = 1.38 eV and Eg = 1.31 eV, respectively (Figure 5b). The lower band gap of the CuO/tourmaline composite suggested a higher utilization efficiency of light [32]. Various measurements were employed to investigate the effect of tourmaline on the separation of photoinduced charge carriers. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Influence of the epitaxial composition on N-face GaN KOH etch kinetics determined by ICP-OES

  • Markus Tautz,
  • Maren T. Kuchenbrod,
  • Joachim Hertkorn,
  • Robert Weinberger,
  • Martin Welzel,
  • Arno Pfitzner and
  • David Díaz Díaz

Beilstein J. Nanotechnol. 2020, 11, 41–50, doi:10.3762/bjnano.11.4

Graphical Abstract
  • ) has become the basis of modern energy-efficient lighting technology over the last 30 years [1]. Especially the binary III–V semiconductor gallium nitride (GaN) is very useful for consumer lighting application. The high band gap energy of 3.4 eV at room temperature permits the production of blue and
PDF
Album
Full Research Paper
Published 03 Jan 2020

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • within OSC-based SAMs with regions of insulating SAM made from large band gap alkanethiolates. The new method is demonstrated using a phenyl-linked anthracenethiolate (PAT), 4-(anthracene-2-ylethynyl)benzyl thiolate. I–V characteristics of differently shaped PAT-islands were measured using the AFM tip as
  • out of regular SAMs. These patches are then isolated from the surrounding monolayer by insulating stripes made of a large band-gap alkanethiolate SAM. Measurements using a conductive probe AFM yield a pronounced dependence of current on island size, from which a lateral resistance coupling of adjacent
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • it to qualify as a semitransparent absorber layer. According to the EQE, appreciable photoelectric conversion in these cells occurs in the 320–750 nm wavelength range. The observed EQE onset at 750 nm corresponds to a band gap of 1.65 eV of crystalline Sb2S3. Cells with 70 and 100 nm thick Sb2S3 film
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • remarkable light absorption capacity [5] and the tunable band gap [6] of inorganic–organic lead halide perovskite crystals make them suitable for the production of organic semiconductors [7], photodetectors [8], and photovoltaics [5]. In 2009, Kojima et al. achieved a breakthrough in using mesoporous TiO2 as
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • ]. According to the analysis carried out by Wadia et al. [3], among 23 semiconducting materials, FeS2 is the best candidate for the development of large-scale solar cells at low cost (<2 × 10−6 ¢/W). Furthermore, FeS2 exhibits excellent optoelectronic properties such as a band gap of 0.8 to 1.38 eV [4][5][6][7
  • electrochemical band gap energy, the valence and conduction band energies (EVB and ECB) were calculated using the following Equation 1 and Equation 2: and where E[onset,ox] and E[onset,red] are the onset potentials of the oxidation and the reduction relative to ferrocene/ferrocenium (Fc+/Fc), E[½(Fc)] is the half
  • -wave ferrocene potential of 0.20 V, and the additional energy of 4.8 eV represents the difference to the vacuum level potential of the normal hydrogen electrode. Thus, we determine an EVB of −4.99 eV and an ECB of −4.20 eV, resulting in a reasonable band gap energy of 0.79 eV, which is in line with the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • mainly comprises the O 2p states, with a band gap energy (Eg) of 3.2 eV. Therefore, the photo-excitation of electron–hole pairs requires photon energies hν ≥ 3.2 eV (wavelength λ < 387 nm). This means that the photo-response range of TiO2 lies in the ultraviolet region, and it can only absorb less than 5
  • study on C/F-codoped (001)-TiO2 concluded that C/F atoms preferentially replaced O atoms on the (001) face, resulting in a surface conduction layer that could promote the migration of photo-generated carriers [19]. N/P-codoping of (001)-TiO2 resulted in a reduction of the band gap from 3.20 to 2.48 eV
PDF
Album
Full Research Paper
Published 01 Nov 2019
Other Beilstein-Institut Open Science Activities